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ABSTRACT A

A theory is developed that describes the processing
of data collected with a satellite-borne or airborne
synthetic-aperture radar (SAR). A description of the
target-radar geometry, and the form of the received,
demodulated radar signal is given. It is shown that
the solution for the case in which the antenna is
directed perpendicular to track (sidelooking), is
obtained by a simplification of the general case in
which the antenna is squinted with respect to the
perpendicular to track.

A mathematical description of the signal proces-
sing operations required to produce a SAR image from
the received radar signal is presented and the form
of the processed signal is described. In particular,
a technique which employs two-dimensional matched
filtering to produce the radar image is discussed and
the ability of this approach to accommodate the
coupling of the range (across-track) and azimuth
(along-track) signals is investigated. In addition,
the extensions to the theory required for non-coherent
averaging are included.

1. INTRODUCTION

In this report a description of the mathematical operations required
to produce geometrically correct images from airborne or satellite-borne
synthetic-aperture radars (SARs) by means of convolution with the impulse
response of a two-dimensional matched filter, Is given. In contrast to
other theories [1-141, this report describes a two-dimensional technique
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that applies to data acquired in either a 'squinted' or 'sidelooking'
configuration. In the 'sidelooking' configuration the radar antenna is
pointed so that the direction of the centre of the bean is perpendicular to
ground track [31. In the 'squinted' configuration the antenna points in a
direction other than the perpendicular (14].

In order to convert the raw radar data to an image, it is generally
required that a two-dimensional signal processing operation be performed.
Conventionally, this operation is segmented into two, one-dimensional
operations where the radar return signals that are associated with the range
(across-track) and azimuth (along-track) coordinates are independently cross-
correlated with their respective reference functions. Provided the range
and azimuth signals are orthogonal, and provided the azimuth signal extent
is small, this approach works well.

The signal processing is more complicated if the SAR antenna is
'squinted', or if the azimuth extent of the signal is large. In these
instances the range and azimuth signals are coupled, i.e., they are not
independent of each other, and the operations required to produce a high
quality distortion-free image are more complicated.

In the following sections the form of the coupled signal is examined,
and the mathematical operations required to produce a high quality image are
described. In particular a novel technique that employs two-dimensional
cross-correlation of the received SAR signal with a two-dimensional reference
function is described. An approximate closed formed solution is given for
the two-dimensional correlation integral and its form is examined. It is
shown that a single cross-correlation function can be used to produce high
quality images from radar signals obtained over a swath in range, but that
these images must be geometrically corrected to remove positional errors
introduced by the processing. Equations are derived to describe the positional
errors and the operations required to remove them. Finally, the modifications
required to extend the theory to 'multilook' processing, or noncoherent
averaging, are developed.

2. RANGE AS A FUNCTION OF AZIMUTH POSITION

In order to characterize the SAR signal that results when the trans-
mitted signal, reflected from a point target that is fixed to the planet,
is returned to the radar, it is necessary to describe the range to the
target as a function of the radar's position in its orbit. To do this, the
flight direction of the radar relative to the surface of the planet is
derived. From this result, an equation describing the range to the point
target as a function of the satellite's orbital position is obtained. The
satellite's orbital position is measured relative to the position in the
orbit at which the point target is in the centre of the antenna's horizontal
pattern.

The velocities of the vehicle and the planet are calculated in the
following manner: The planet is assumed to be a sphere of radius re rotating
with angular velocity we, and the satellite is assumed to be travelling along
a circular orbit at angular velocity wg (see Figure 1). The tangential



velocity Val of the radar, with respect to the Inertial frame Insr.% ,
where h* In the altitude of the satellite above the surface of the planet.
The subsatellite point S1 ("ee Figure 2), Is the point of Intersection of the
surf ace of the Planet &n3 the line Joining the radar and the centre of the
planet (see Figure 3). The point S1.has a tangential'velocity VA/Ca, with
respect to the Inertial fra, where the constant Ca is defined asI I h

Ca m1+4.-L * (1)

The surface of the planet is moving beneath Sl at a tangential velocity .
defined with respect to the Inertial fram

OBTLPLANE

FibumIw Anon~ ftt dslne o~bll V/c* and Vf a OngentW to Mhe plane wsrce.

Fisurs I %k fqutveiot Vwo4I4
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The point S1 has a velocity V 1with respect to the rotating surface.
The magnitude of V is

V [V2 (E Ve)(])

i&19  _n + (2)a P

and its direction relative to V.IC. is (see Figure 2)

-tan1  en (3)ye a V
ep

a

The velocities V and V are the components of Ve normal to, and parallel
to V5 /Ca. respectvely. epIn Appendix A, Ve and V.pare shown to be

V -wr cos8i, (4)

nd

V en -w er e sing I cos,, (5

where 0i1 is the angle of Inclination of the orbit, and #0Is the position of
the spacecraft in the orbital plane measured from the equator (see Figure 1).
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Equations (2) and (3) are valid for the vehicle in an ascending or descending
orbit.

It is assumed that the radar antenna is pointed at an angle a with
respect to ground track as shown in Figure 3. In this report the angle ey
will be called the squint angle. The angle

Sy, (6)

is then the complement of the squint angle. This angle is composed of two
components, i.e.,

S=e +e (7)
y ye ya

where Bye is caused by planet rotation and Oya is the antenna pointing angle
relative to the perpendicular to Va. The angles Bye and a are defined with
respect to the equivalent velocity vector Ve, as shown in Figure 2, for the
case 0 ya0.

*The slant range from the radar located at S', to a point target A on
the planet's surface (see Figure 

3), is

r [r2 + (re+hs)2 - 2r (re+hs)cosO2] , (8)

where 02 is the angle subtended by the arc AS2 on the surface of the planet
when S2 is the sub-satellite point.

Equation (8) can be rewritten to show how r2 varies with both the
satellite's orbital position and the complementary squint angle a. From
spherical trigonometry and Figure 3 it can be shown that

cose 2 = cosercos(eaeb)  (9)

and

sin6  - cosasin8 (10)a o er

The angles Or$ Oat Ob and 0 are defined as follows: Or is the angle subtended
at the planet's centre by the arc ASO, where So is the sub-satellite point
when the satellite is located at its point of closest approach to A; ea is
the angle which defines the satellite's position in the orbit where the
radar antenna is pointing directly at the target at A; % is the angle
measured relative to 0a which defines the present position of the satellite;
and 0 is the angle subtended by the arc AS1 on the surface of the planet,
when S1 is the sub-satellite point. If one expands co(Oa+eb) in (9) and
substitutes for sinOa , by using (10)9 the equation for r2 can be rewritten
as a function of '.

r 2(b) a {a ah - 2r (r a+h) a cC058 b - in'co:se il. (11)
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It is more convenient to work with r2(eb) exprssedI as a polynomial,
than with the form given by (11). The polynomial form is obtained by
expanding r (e ) in a Mclaurin series about ea. Previous treatments (1] have
expanded r2f 

0b about a0-0. An expansion about 0 -0 is adequate when there
is no squints ies, a - /2 red; however for a a ; w/2 red. an expansion
about Oa as given by (10), yields a series which requires fever termi to
represent r2(0b) accurately.

A Mclaurin series expansion for r2(Ob), about angle ea is

r 2(6 b~ E P1 0b(12)

The first three derivatives of th seiseauae-tbo ae

r 2 (0) - r 1  (13)

(1) re (r +h ) siner(4
r 2  (0)- r tns(4

(2) + (r +h ) 2  r1  [r (1 )(0)12
r 2  ()0 2raa 21 2 r (15)

and

r2 + r +h 2 3[r(1)(0]
r()(0) - -r (1 ) (0) r2  3[r a 2 (01216)

where ri Is the slant ran e to point A at angle Be, It can be shown that in
most cases the terms in 8 b and above in (12) can be neglected. Thus r2(ob)
can be written

r2 (a) ao + als+as 2  (17)

where s Is the arc length along the ground track and is given by

a - Obra,3 (18)

and,

a0 -r 1 9 (19)

r siner
a 1  - (20)

and,
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a2  - a - _ _ " (21)

Equation (17) is the general expression for the slant range to a point

reflector.

For a-w/2 (17) simplifies to

r2 (s) = a0 + a2s
2  (22)

where

ao = r (23)

a1 = 0 (24)

a2 1 (l+C
2
) - , (25)

and ro is the slant range to point A when the radar is at its point of
closest approach to A.

A general expression for range as a function of, time (or orbital
position 8b), is given by (17). Equation (17) is an approximation that is
valid for a small angular extent about 8a . The error introduced by approxi-
mating (11) by (17) can be evaluated by calculating the difference between
these two equations for the Ob values of interest.

In the derivation of (17) a circular orbit and a spherical planet,
i.e., constant h. were assumed. This constraint can be relaxed so that an
elliptical orbit and ellipsoidal planet can be accommodated. Appendix B
gives the derivation of an extended version of (11) which includes a constant
vertical velocity Vv. Obviously, for the more general case of an elliptical
orbit, neither Veq nor V is truly constant. However for realistic orbits,
accelerations eq and Vv are small.

3. THE FORM OF THE TWO-DIMENSIONAL SIGNAL FOR A POINT TARGET

In this treatment of SAR it is assumed that the surface causing the
radar backscatter can be modelled by a collection of point scatterers. The
SAR illuminates and receives the signal scattered from these scatterers. In
this section this signal is described. Subsequent sections will discuss the
signal processing that operates upon the received signal from each point
scatterer and produces an image of each point.

The term twe-dimensional is used to describe the signal because the
received signal is formed by gathering information from each pulse trans-
mitted (the range dimension), and from changes that occur in the received
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signal from pulse to pulse (the along track or azimuth dimension), as a
result of the relative motion between the radar and the scatterer. The
derivation of the form of the two-dimensional signal consists of the follow-
ing steps:

1. the determination of the form of the transmitted signal;

2. the derivation of the form of the signal received by the radar when
this transmitted signal is reflected back to the radar by a point
target; and

3. the derivation of the form of the signal obtained by mixing in a
quadrature detector, the received signal with the carrier of the
transmitted signal.

It will be described in later sections how this two-dimensional signal
is processed to form the two-dimensional radar image of the point target.

3.1 FORM OF THE TRANSMITTED SIG14AL

As the vehicle upon which the radar is mounted proceeds along its
flight path, the radar transmits a series of pulses (see Figure 4) of the
form

fT(t) = IRe r W(t)*(t-mT)exp[j(c t+o0)], (26)

where *(t-mT) is a complex modulation function, W(t) is a weighting function
which will be defined later, t is time, T is the interpulse period, m is the
pulse number, 00 is the phase of the carrier at t-0, and wc is the carrier
frequency. The argument (t-mT) og the modulation function represents time
measured from the start of the m pulse. It is assumed for convenience
that m-O when the satellite is located at S1 (see Figure 3), i.e., at an
angle Oa from the position occupied by the satellite when it is at the point
of closest approach So.

MT

O w (t-wT)4T

t Fipje 4. Tranmrnitted Signal
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3.2 FORM OF THE RECEIVED SIGNAL

The signal transmitted at time t from position S; (Figure 11), and

received at time t+At at position SR after reflection from the point target

at A, is given by

fR (t) Re rW2(t)4I(t-mT-At)

exp [W (t-At) + f} (27)

where, At is the time taken by the signal to travel the path STASg (Figure

11), and r is the reflection coefficient of the point scatterer at A. It is

assumed that the point target at A is aspect insensitive so that r does not
change during the time the radar views the target.

The range to the target changes during the time taken to travel the
path STASR (Figure 11). It is shown in Appendix C that a very good approxi-
mation for At is

2r 2 (a)
At - . (28)c

3.3 FORM OF THE SIGNAL OUTPUT BY THE QUADRATURE DETECTOR
The received signal fR(t) is demodulated in a quadrature detector by

mixing fR(t) with the carrier of fT(t+At). The transit time At can be

replaced by 2(ao+a s+a2 s
2 )/c using (17) and (28), and then the complex signal

output by the quadrature detector can be expressed as the two-dimensional

function

fD(t',s) _ E W 2 (t', s)* t' - - (ao+als+a2s2)] exp[-j2k(aO+als+a2s
2)], (29)

where,

t' - t-uT, (30)

is time measured from the start of the.mth pulse,

a - mV T, (31)
eq

is the arc length travelled by the sub-satellite point along the sub-satellite

track during m interpulse periods, and

k (32)
C,

is the wave number. The variable t' Is a measure of slant range. The
specific value of t' given by At (28) refers to the transmit time for a

target at a specific slant range r2 .

____
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In eqn. (29) W2(t) has been rewritten as the two-dimensional function
W(t',s) by segmenting W(t) into consecutive sections, of length T, and using
the variable 's' to index the sections.

The weighting function W2 (t',s) does two things: it limits the range
extent of the strip of terrain from which signals are received; and it limits
the number of pulses which can be coherently integrated to form the SAR image
of the target at A. In limiting the number of pulses that can be coherently
integrated, W2 (t',s) also limits the maximum azimuth resolution attainable.

It is assumed that the position and width of W2(t',s) in the t'
dimension are chosen so that the radar illuminates only a narrow strip of
the planet's surface, containing targets at slant ranges in the interval

cnT < r 2  (n+l)T, (33)
2 -2-2

where n is an integer. There is a range ambiguity, therefore the value of n

must be known to convert At correctly into r2 via (28).

When W 2(t',s) is chosen to satisfy (33), signals at ranges
c

r= = r2 ± p j T, p - 1,2,..., (34)

which would otherwise arrive at the radar during the time interval
(nT < t' < (n+l)T] and produce ambiguous signals superimposed on the desired
signal, do not have to be considered. It is also assumed that the interval
of r2 which satisfies (33) is large compared to the range extent in t' of the
modulation function b in (29), and that W2(t',s) varies slowly with t'. With
these assumptions W2 (t',s) can be written as

W2 (t',s) - W0W1 (s) , (35)

where W0 is a constant.

The shape of Wl(s) in the s-dimension is assumed for ease of analysis
to be rectangular. The actual shape of Wl(s) is determined by the antenna
pattern. The following analysis will differ in the details but not the
general concept if a different Wl(s) is used. Equation (34) for W2(t',s),
can be written

W 2 (t',s) = W0 rect(fs) , (36)

where LS is the synthetic-aperture length. The size of LS determines the
number of pulses, returned from the point target at A, which can be coherently
processed to form the SAR image of A.

The general two-dimensional signal for a unity gain point target is
obtained by setting r to unity in (29), i.e.,

h (0.11) - W0 rect(L-)*[Jt A (a +aS+a a2)] exp[-j2k(a +a s+a s2)]. (37)
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Figure 5 shows the form of hl(t',s). The responses from three point
targets are shown. At some particular instant in time targets (1) and (2)
both lie in the same direction a but are at different rl's. Target (3) lies
at the same range r0 , as target (1), but is situated at a different a.

The thick solid lines in Figure 5 represent the envelope of h1 (t',s).
The lines limiting the s extent are the edges of the rect(s/L S) function.
This function increases in length as the radar's antenna pattern broadens
with range. In other words the arc length LS over which the radar views the
target increases with range.

The curved lines limiting the t' extent of the signal are the edges of
1*1 in (37). The curvature of these lines is determined by the manner in
which r2 varies with s (shown by the dashed lines in Figure 5).

The thin solid lines inside the *-envelope represent constant phase
contours of 4. The phase of * is composed of two factors: the phase
exp[-j2k(aO+als+a2s

2)] along the 's' coordinate (see Figure 5), and the
phase of 0 along the t' coordinate.

4. SIGNAL COMPRESSION

The signal (29) returned from the point target at A (Figure 3) must be
processed to produce a two-dimensional image of the target. The goal of this
section is to show the form of the solution resulting from the two-dimensional
convolution of the signal received from a point target (r-1) with the two-
dimensional impulse response of a filter that is matched to the signal at a
particular reference range. A mathematical analysis, that results in an
approximate closed-form solution for the equation describing the image, is
presented.

S //

SI /
SI

Si...

Figure 5. The form of the sWis reived from three point avpgt Taipta () sW (2) are llmlnmad by
the antenna at the s time. Taret 13) is at the v ro t tOae (1) but is ljhimbufd at & IArr time.
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In performing the analysis the general point target is assumed to be at
range r1 and complementary squint angle a, and to have an associated synthetic-
aperture length Ls. the two-dimensional impulse response of the matched filter
is calculated for a point target with a reflection coefficient of unity,
located at a reference range rland complementary squint angle i, and which
has a synthetic aperture length Ls. Thevalues ri, a and LS are choen to be
different from the reference values r1, a and Ls. This is done so that the
effect of mismatch between the signal and reference function can be examined
in the final closed form solution for the SAR image.

4.1 THE TWO-DIMENSIONAL MATCHED FILTER

The impulse response of the matched filter is the time-reversed conju-
gate of the two-dimensional signal returned from a point target (37). When
the parameters used in (37) are changed to the reference values, the impulse
response of the matched filter can be written as

h2 (t',s) - fi(-t',-s) (35)

i.e.,

h(t,s) - rect( *[€' - (IO- 1s+a2s2 exp[j2k(1o-1e+1s9 2)1. (39)

where the i, a1 , and i2 refer to the reference values of SO, al, and a2,

which are found by substituting ? and 9 in (19)-(21).

In the actual analysis a slightly modified form of (39), in which the

A0 term has been removed, will be used

W.9(',) - reict(;;)ID*[-t' - Ac (.&16s42 g2)] exp Ij 2k(A-1 &+A12s a . (40)

The use of h3(t',s) instead of h2 (t',s) causes targets to be mapped at range
a0 instead of range a0-50 in the final SAR Image. In other words a shift of
'the map origin is introduced.

4.2 SOLUTION OF THE TWO-DIMENSIONAL CONVOLUTION INTEGRAL

An equation describing the form of the output SAR image Is obtained
by solving the two-dimensional convolution integral

fo0 ( t ' 's )  hS h3(- - D ) - f rect rect

I~p-i2k~ad+a,&-1(&-s) + & 2 -&2(C_8)2

- CA &(C8 + &2 (&-e)) *[0 - C ( 0 .1 + 2C2] ~ (3
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The solution to (41) will be obtained in three steps. The first step

will be to solve the inside integral by integrating over A. The second step

will be to place a restriction on the & variation of the solution to the

inside integral. Provided certain conditions are satisfied this restriction
will allow a separation of the variables. The third step will be to solve
the outside integral which is a function of C.

4.2.1 Solution of the Inside Integral

The solution to the inside integral is g(y) where

-~ nt' (ao+al&-aI(Q-s)+a2 -2 s  (42)

The function g(y) is the auto-correlation of #, and has its maximm at

t- = 9 (a0+a -I1 (C-s)+a 2 -2& (&-s) 2 ]. (43)

The form of the modulation function * has not yet been specified.
Modulation functions used for pulse-compression normally have the character-

istic that most of the energy in the output pulse is confined to a main peak
which has a 3 dB width approximately equal to wc/KT, where 2w/KT is the band-
width in Hz. In this report only modulation functions of this type will be
considered.

The shape of the g(y) function that is obtained for a typical modulation
code j(t') is examined next. If a linear FM modulation function is assumed,
(t') is given by

OW(t) =rect- .(t e2 p (24

where T is the pulsewidth, and K is the linear FM rate in red/s2 . For *(t')

given by (44),

g(y) - (i-lyl) rect 2-) sine 1 (T-IJ)] (45)

where sinc x - sin x/x.

The shape of g(y) is shown in Figure 6. The sinc(Ky/2 (T-Iyl)] factor
produces three peaks; the outer two of which are suppressed by the (T-IYI)
factor. Provided the time-bandwidth product of the range (t') signal Is
high, i.e., provided y << T in the vicinity of y-0, the major portion of the

signal energy will be contained in the central peak. The equation describing
the form of this peak can be closely approximated by

,(Y) - T sinC2 E Y. (46)

The r resolution is proportional to the mainlobe width (the width between
the first null on each side of y-0), which is given by
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! I

-r aft

-T 0 Tr

Figure 6. Form of Signal from a Single Point Tavet, After the Solution of the Insld Inta.

2irc (47)WR KT

It can be seen in Figure 6 that the position of the central peak produced by
the solution of the inner integral is at y-O. From (42) it is known that y
depends on (a C-A(E-s)-a2 2 -42 (t-s)2I which in turn, is a function of the
azimuth (E) positton. The F-dependence is a manifestation of the coupling
or interdependence of the range (to) and along-track (a) signals.

4.2.2 Separation of Variables

In order to obtain an analytical solution to the outside integral in
(41), y In g(y) must be constrained such that the C-dependence is removed.
If one lets

A2 - a 2-1 2  (48)

A, al-I+2&22 (49)

and

AO aO+I11o-s2s20 (50)

one can rewrite (42) as

-t, - _c(A2Q+Ap4+*0)" (51)

The C-dependence can be removed from (46) by choosing A2 and A1 in such a way
that the position of the main peak does not deviate from y-00 y more than a
small fraction of its width; i.e., a small fraction of 2vc/K. This deviation
is described by the following equation
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IAC 2 + A10 << 2 W_ (52)

r 2 1T-

With the restriction given by (52), the substitution

Y t' a t (A 6r) (53)

can be made for y in g(y), and an approximate analytical solution for (41)

obtained.

4.2.3 Solution of the Outside Integral

The remaining step in the solution of (41) is the integration over 9.

With y given by (53), (41) can be written as

f (t',s) 0 - g t - 2 rect (=+± )

rect(S) exp(-J2k(Ao + A,& + A292 )]d . (54)

The solution to (54) has two major cases$ A2-0 and A2 0, and two sub-
cases of each of the major ones, LS !.LS and LS < LS-

The variable A2 has a special significance in ttrat it determines the
magnitude of the quadratic phase error, i.e.,

o 2ky 2. (55)

As shown in [15] the magnitude of the quadratic phase error determines whether
or not an image can be considered focussed. In [15] the in-focus condition is
defined by

I% < rad . (56)

In this section the solution for A =0 will be obtained, and then by
reference to (15] it will be shown that ior A2#0 the solution gradually
degrades as IA2 1 increases. With this link established, it will be assumed
that the solution for A2-0 can be used as long as the image is in focus.

For LS>LS, the impulse response of the matched filter is longer than
the signal from which the synthetic-aperture is formed. It will be shown
later that in certain situations LS must be greater than Ls in order to
obtain the full along-track resolution.

For Ls<Ls, the impulse response of the matched filter is shorter than
the signal from which the synthetic-aperture is formed. Sometimes ts is
chosen to be smaller than LS because the antenna along-track illumination is
broader, and thus LS is longer, than required to obtain the desired resolu-
tion.

li -5-- I I
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4.2.3.1 Solution for Zero Quadratic Phase Error

1. L s>L

For this sub-case the solution to (54) is given by

f(tS) e )xp(-j2kAo)
0 s 2 ino ,__2 (Ao+ r

rect s+ LS +S ctj(l 8 L

( -L-S) 4)

sinc [ i s +2 ) r t[(57s-)

Figure 7 shows the form of (57). It can be seen that it is highly desirable
to ensure that the position of the main peak of the azimuth responseSp
where

I1-al
i=------ 2 (58)

is confined to the intervfal

(Ls- s) (YsLs,),

2 -p- 2 "

In this interval neither attenuation nor broadening of the main peak occurs,
and the main peak width (i.e. between the nulls), is given by

(LO
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For (59) to hold, LS must be chosen such that

Ls L S + s . (61)
2. LS < LS

For this sub-case the solution to (54) is given by
wr r1f(t',s) - -0 g 2(o6

0 I C

exp(-j2kA0) rect (s4+ )S

(L -L S
( + ":$ expi JkA 1 I-s - (4 )]II

sinc[c~i 2SL~

+ ct ( ) LS exp(-2j kA.s)

a•rfeL ( s_ sL,

)i.,c(k ,s) + rect Ls

sin .k . + (62)

When LS is chosen such that

LS >--S +p , (63)

the main peak width, between the nulls, is

~az 
(64)k
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4.2.3.2 Solution for Non-Zero Quadratic Phase Error

The purpose of this section is to obtain the solution for (54), when
A2  0. By reference to [151 it is shown that as A2 approaches zero, the
solution to (54) gradually assumes the form of (57) or (62).

When A2 # 0, the solution to (54) is found by solving the following
integral

f(twos) -- g(y) exTpi2k (Ao - L jf rectk-T-) rect

tionx for is oun (' + 2id.- (65)

The solution to (65) has two sub-cases, L*Ls and Ls<Ls. A link with (57)

and (62) will be established by examining the solution for LeLS .  The solu-
t6on for LS<LS is found in a similar manner. When LeLs. the solution to~(65) is

W r rA
fo(t',s) 0 g(Y) exp 2kA -

1 - (Q [ -

+k_ rect sL S  "1) [ P S1)

+.iot ( ) sos) -[c(t,) - C;) + j[S(C) - S(C ),

+ rect IMT--)~ CD - CP) + JIS() - MIA)~ (66)

where

sM') -f Cos . t2 dt, (67)

o

SWC) f sint t2 dt9  (68)

0
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are Fresnel integrals, and

2 -2 LS +(69)

92- 2 + +  (70)

2 ff2 L(71)

and

The second term in (66) represents the solution when the main peak is
located in the region (Ls-LS)/2 to (Ls-Ls)/2. In this region (66) becomes

f0ts 2w 0 r g(Y) 52xpjj2k (AO k2)

k (-LI~' re,4"~A {tc(p) - C(0)1 + j(SP - (Q)] , (73)

2 \Ls2s

where, using the notation of [15],

p L + n) (74)

-L -n) C 31 (75)

and

At AlkL's (76)

and
! n-LS 22- •(77)

n L8O2 - r xi •max

The substitution In term of At# and n allows comparison of (73) with the
results in (15). In (151, It is shown that as *emea decreases from w/8 tad
to 0 red only a slight change in the shape of the main compression peak
occurs. Similarly, the solutions (57) and (62) degrade only slightly as
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IA21 -1-I~/ rad. Thus, for fam w/8 rad (57) and (62) can be used as the
general solution to (54).

4.3 PROCESSING SWATH IN RANGE

The allowable processing swath in range Ar1 over which a single matched
filter can be used, it determined by the maximum range mismatch which satis-
fies both the vestriction on fe, (56), and the equation for Sr, (52).

4.3.1 oexRestriction

As can be seen from (55), the maximum quadratic phase error occurs at
Cuax which from (54) is

Smx (78)

The maximum value of

Ar1 a 21r1-rl1 (79)

is found by solution of the following equation:

2k2( L S 2
L_ (80)

where 9. has been replaced by (55), and & by (78). After the substitution of
(48) for A2 , and of (32) for k, (80) can be written as

8L2

X~ 1a2-121 <1,(1

After replacement of a2 and 12 in (81), the equation can be rewritten as

8L2  lC2 r 2  r2  5iLn 20
S ~Ii ~ 1. L . C2 2 r

1 2 1 1 2 2r~ a-"i a tana M-

I 1+ C2  f 2  r 2  8:z126
-_ a 1 C r

2r [2 2r f2 a 2r an. (82)

If it Is assumed that (r2/r2) << 1. m and 8 then (82) can be simplified to1.



22

2L2 1+ C2  r
S a + Ca cos 2 )

3,
r3 Ar

-Cah 2cos 2  11 < 1. (83)
a a r

If the further assumption Arl/2 << r1 can be made, then (83) can be
rearranged to give Ar1 explicitly, i.e.,

Afr 1  1
Ar _,< (84)

2L 1 + c 2  3Ch 2cos820
a_ C co22a + as a

2 a as I

Otherwise, the solution for Ar must be found from (82) or (83).

For the case LS > LS, the value of LS is found from (65) to be

Ls - (85)
a: 2

If the same approximations used in (83) and (84) are used in the substitution
for A2 in (85), (84) can be rewritten as

2

[1+ C h2

az 7 (86)2Al -- +(2  3C h2

C- CoaO2 + Cos2a

From (86) it can be seen that for moderate squint, i.e., a m 90% the range
swath is determined by

W2 Il+C 2 \

A z(+Ca)I (87)2A 2

A large squint angle, i.e., small a, coupled with a steep depression
angle, i.e., he/r1 - 1, causes Ar1 to be decreased from the value given in
(87). This combination of small a and h./r 1 - 1 represents the most severe
operating geometry with respect to the range swath Arl, that can be processed
with a single matched filter.
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4.3.2 6r Restriction

In this section it is shown that a suitable 6r can be found to satisfy
(52). Bounds have already been placed on 9 (78), and A2 (80). Thus the only
step remaining is the derivation of a bound on Al. The validity of the
solution to (40) is restricted to a neighborhood of radius 2 Waz about the
main compresion peak. With this restriction, JA11 is limited to the interval

1Al1 i Jal - EI + 212 (sp 2 Waz) (88)

After substitution for sp (59), and Waz ((60) or (64)), (88) can be written

A 11 I Xl. (89)

If the restriction (89) is coupled with those on A2 (80) and C (78), then
(52) can be rewritten as

r6 + A < > LS, (90)6r 32 << Wr' S-

or

6 . 1_ + S1 << W S < LS .(91)

Equations (90) and (91) give the maximum value of Sr . The width Wr is always
much greater than A because of fundamental physical constraints. Therefore
the solutions given by (57) and (62) are only constrained by the quadratic
phase error restriction (56). Henceforth, the quadratic phase error restric-
tion will be considered as the only restriction.

The restriction on Sr ensures that no additional energy is spilled
into the two-dimensional sidelobe structure by the range-azimuth coupling.
The solutions obtained subject to this restriction do not provide any insight
as to the detailed form of this sidelobe structure. The sidelobes can only
be fully described by a numerical solution of (41).

4.4 PROCESSING INTERVAL IN AZIMUTH

In the along-track or azimuth dimension, there are also restrictions
on the processing swath. As the vehicle carrying the radar moves along its
track it will, in general, traverse lines of constant latitude. The latitude
change introduces a change in 0ye. and therefore a. If a changes appreciably
in value from a, the reference function (40) will no longer match the
properties of the signal received by the antenna. The length of the refer-
ence function Ls must be chosen according to (63) so that it is long enough
to properly match the data that is received.

4.5 POSITIONAL ERRORS IN COMPRESSED SIGNAL

In this section it is shown that the two-dimensional convolution
selects portions of the signal fD with slope lI , These selected portions
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are shown to be offset in r1 and s from the centre of the two-dimensional
signal returned from the target.

The selection process can be understood by examining Figure 8. In
Figure 8 are shown three sets of lines: the dotted is a line of constant 1;
the solid are lines of constant S1 and the dai3hed are lines of constant ro.
The slopes of the dashed lines are given by

d al + 2a a 
(92)

2

For the particular line through D, (92) can be written as

df 2"- l 
(93)

do

Equation (93) is the slope of the phase fronts of the two-dimensional refer-
ence function h (t',o). The two-dimensional c,)nvolution will cause a section
of fD(t',s) to ie selected that has a slope 1l, It is known from (64) that
the compression peak, for a target located along the line s-0 (e.g., E in
Figure 8), will be located at sp (e.g., F in Figure 8). For a2 - 12 the
slope at F is

d I', - d2 (94)

where df2/ds isn is the slope at D, the point to which the reference function
is matched. SInce the locations of the points 9 and F are general, it can
be stated that the convolution does indeed select portions of fD(t',*) with
the same slope as h3(t',s) at D.

,* ME OF
•CONST U

0 Vrot ros

F~jur Fwmof OnIndu
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In Figure 8 it is shown that the output signal is also shifted in range
by the displacement from E to F. The output position, as seen In (53), is
shifted from a0 to A0 I 6r' where

A0 - a0 + Ar(s p), (95)

and

Ar(Sp) isp - 2p. (96)

Both the r1-shift AW(e ), and the s-shift si, are range dependent.
They must be removed in order to form a geometrically correct Image.

5. IMAGE FORMATION -.

In order to form a geometrically correct Image, the azimuth offsets a
(59), and the range offsets Ar(Sp) (96), mst be removed. After removal ofP
these offsets, a line of points, e.g., ASJ in Figure 9, will lie along a line
of constant a in the (rls) coordinate system, i.e., will be plotted perpen-
dicular to s. When viewed from the (dosso ) coordinate system, where (do.so)
forms an orthongonal map grid on the surface of the planet, the axes rl and
a are neither coplanar nor orthogonal. Therefore when an orthogonal map is
required, images produced in the (rls) coordinate system must undergo a
coordinate transformation. This transformation involves two operations:

1. conversion from slant range rl to ground range dl, and

2. conversion from processor coordinates (d1,s) to map coordinates
(d to ).

Ground range is obtained from slant range by using the equation

( % -C 2  .

d r coo (97)d1 = re  2Ca

The conversion from (dls) to (do,so ) Is made by writing the constant
s line (AS in Figure 9) at an angle with respect to the sub-satellite track
(got. ie data must be laid down on the map along the lines described by
the utersection of the antenna centre-beam plane and the surface of the
earth, when the satellite is at orbital position 68 (re+h). The equations
which describe the transformation are

d0 re sIn1l i (98)

0 
-

and * ms- sin (99
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Figure 10 above the relatiouddp of dl, dot a and a. for a target located at

A.0

III, 01

Fa"~ A Nadir Gem.,eg fo Abftb*A'.nky

S-s

sos
do

Pw~~ ~~ iA 7. . ew~A I~emd~en
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6. WJLTI-LOOK SIGNAL PROCESSING

This section describes multi-look signal processing, a technique that is
employed in SAR to reduce target scintillation.

In Section 3.3 it was shown, (see eqn. 64)) that the azimuthal resolu-
tion is proportional to the length of the signal function that Is used to
form the synthetic-aperture. Frequently, the antenna beamwidth 0 is suffi-
ciently broad that the resulting signal function is longer than that required
to produce the desired azimuth resolution. Rather than truncating the signal
and thereby wasting the energy associated with this additional signal, it is
comon practice to segment It into several pieces, each of appropriate length
for the resolution desired. Each of these segments is matched-filtered to
produce an Image.

The images are geometrically corrected and converted to map coordinates.
After registering the images with respect to one another, they are noncoher-
ently summed together to form a composite Image. The terms multi-looking,
angle diversity, and mixed ntegration are the jargon comeonly used to
describe the noncoherent averaging operation.

The segmenting operation described above results in using portions of
the- azimuth signal that are acquired at different s-angles, (see Figure 9).
Each of these Images are referred to as "looks"; the qth look being at angle
a . Obviously the q's nt be selected such that the corresponding signal
sdments are contained within the antenna horisontal beavidth.

In order to register the looks, it is necessary to specify the matched
filters for each of the looks so that each filter corresponds to the same
point A. To specify the qth filter, aq is first selected, subject to the
constraint mentioned above, and a, , ae , and a2, are calculated using rlq
and aq. The parameter rlq is th elat'range to A when A is at an angle-to-
track aq. In terms of the f a tal parmters a and rl, rlq is given by

2 is
r21

I'lI
2- " .2+ ' '  1 " .i~q a  (lo

C2 1- C SU2 1- (100)2C J
The qth filter Is then specified by

O q r. (101)

r s/LnO

lq ir lq a tanq s

and
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a2q 2rq 2r] a (103)

rr2 1 + C2 -
i tn aa• n", -C sin.(1 4

The watched filtering and Image formation operations for the multi-look
case, are identical to those required for the single look case, except that
In all the euations the parameters aoqs aq a2 q. a and r are substituted
for a0 9 a3. a2, t, and rl.

7. EXAMPLE

A software digital processor based on the theory described in this
report has been programmed and used to produce Imagery from data acquired
with airborne and satellite-borne SARs. Examples of processed Imagery are
shown In Figures 12 and 13. The Images were produced using data from the
SEASAT-A satellite. The Image in Figure 12 is a four-look 25m ground range x
25m asimuth resolution Image of Trois 1ivieres, Quebec. The Image in Figure
13 is a single-look 25a ground range x 7= azimuth resolution image of
Halifax, Nova Scotia. The processing parameters for these two scenes are

* given in Table 1. For the SKASAT-A satellite the antenna bean Is only
slightly squinted (3-4"); however, the relatively low frequency (1.276 Gas)
of the transmitted signal, and the large distance between the satellite and
the planet's surface, mn that processing the data to 7 and 25. resolutions
involves the same degree of complexity as more highly squinted airborne
systeON.

I

FAWm If. D#ftW ofSwet tw" at rmm*tdWW Room rhm
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L TROIS RIVIERES, OUEBEC

25M4 RA X 2514 AZ RESOLUTION -4 LOOKS

AZ IMUTH

Fpsne 12. SEASA T-A SAN Impg of Twoig Riview, Quebec

-_ A -C-
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HALIFAX. NOVA SCOT IA
ORBIT 1 238 SEP, '1ll 1 97$:.
25M4 RA X 7M AZ RESOLUTION 1 LOOK

AZI MUTH

(5

I2

F gure 13. SEASA T-A SA R Image of Halifax, Nova Scotia

__________ ___________________ mom----______
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TABLE I

Procening Pa rmwne for Imagry Exwiwla

PeramIa1 Hdifx (7 w) 1-Look Trek Rivien (25m w) 4-Look

h 796.529 km 796.8653 km

r. 6368.110 km 6367.623 km

Vgq 6775.349 !__ 6774.502 m$ S

,, 86.82r' 87.660W

651.002 km 866.781 km

0C 1.276 GHZ 1276 GHz2ff

I1646.703 Hz 1646.7603
T 4

LS  13.52 km 4.13 km

K -0.27-0.56275 MHz

3.9 pm 33.9 linc

WR 15.7m 15.7m

Wo

A 1 wrI ou.) 0.25 km 4.0 km

0.51r

8. SU~RY

A general theory of two-dimenlonal BAR processing has been presented.
The forms of the range and asimuth radar signals returned from a &eoral
point target have been derived, ad it has been shm that them signals are
not in general Independent, i.e., they are coupled. An approximate closed
form solution describing the Iiage produced by performing a two-dlmensional
convolution of the 6*1 signal, returned from a point target, withtba two-
dilmoal impulse response of the matched filter has also been given. by
msms of this solution it has been shm that a single two-diaensional
refereme function can be used to produce high quality images from radar
signals obtained over a math In ruae. ioever, these iages inust be
geometrically corrected to remove positional errors Introduced by the
processing. Equations have been developed .to describe, both the. positional



32

errors and the operations required to remove them. Finally, the modifications
required to extend the theory to include the case of multi-look processing, or
noncoherent averaging have been developed.
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APPENDIX A

Derivation of Ven and Vep

A brief derivation of (4) and (5) are liven here. Refer to Figure 1.
From rules of spherical trigonometry for right spherical triangles one has

sin(-0 )cos0
coS~s M(- s ±0n2(W-9 1 )s#n20 1ir v/2 rad. (A.1)

= 0, 6, W w/2 rad.

and

sin( -1e) = sin#at /sino. (A.2)

The velocity components are

Ven (ere cose at)CoOs* (A.3)

and

V - (w ere Cos# )sin (A.4),,ep e oe lat) 8l~

where we is the planet rotational frequency. After some manipulation and the

use of sin#, - tl-cos2#8, (4) and (5) are obtained.

il.
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APPENDIX B

Range as a Function of Orbital-Position in the Presence of an Orbital
Vertical Velocity Component

To include a vertical velocity component, Vv. in (17) hs is replaced by
h + Vvs/V . The second term is the radial displacement from the circular
orbit underone by the spacecraft in weeping through the angle ob . The range
r then becomes

r + h + h v  -2re (r +hs + s)i 2 re e a Ve V
eqVeq

* [cosecose - sinecosecoseb] (B.l)

When the first three terms of the Maclaurin series are derived from the equa-

tion for r2, as in Section 2, the a-coefficients are seen to be

a0 = r1  (B.2)

a1  C r + - C cs (B.3)

-1 rCa tans a eq

1 + 1 (r2 2  /V sin8 B
a2 "2rl 2 - 2 a a 1 +  -2 Vj tane B4

11q/ \e
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APPENDIX C

Derivation of Equation Describing the Transit Time

The distance travelled between transmission and reception of a pulse is
(see Figure 11)

STS ( q, (C.1)

where rT and rR are the ranges to the target at the times of pulse transmis-
sion and reception, respectively. Then, following the treatment of [12], the
range at the time of transmission if

T sin -(C.2)

where AB is the distance between A and B, and 'a' is the angle between BS4
and AS+ as shown in Figure 11. The angle 'b' between SISA and SIA is related
to 'a' as follows

sin a = - cos b. (C.3)

Therefore, the range at the time of reception is found from the
solution of

2

r2 . r + I (rT+rR - 2rT PA (rT+rR)cos b (C.4)

which can also be written as

V

r2.rT r r) (rT4+rR) AB (C.5)

If one factors r2-r2 into (rR-rT)(rR+rT). and divides both sides by (rR+rT),the following equatlons are obtained

1 + V

R 2 (C.6)

r l I - l HT + j.~~a
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2r ~ V-
rR+rT + 2 A 2B

C (C. )

Thus

r +r 2rT V --
c C C 2c8

Since (Veq/c) is always much smaller than unity and usually A << rT
the equation e

2rT (C-9)

is a very good approximation to (C.8).

t




